题目内容
【题目】(10分)如图,在直角坐标系xOy中,A(﹣1,0),B(3,0),将A,B同时分别向上平移2个单位,再向右平移1个单位,得到的对应点分别为D,C,连接AD,BC.
(1)直接写出点C,D的坐标:C ,D ;
(2)四边形ABCD的面积为 ;
(3)点P为线段BC上一动点(不含端点),连接PD,PO.求证:∠CDP+∠BOP=∠OPD.
【答案】(1)(4,2),(0,2);(2)8;(3)见解析
【解析】试题分析:(1)根据C、D两点在坐标系中的位置即可得出此两点坐标;
(2)先判断出四边形ABCD是平行四边形,再求出其面积即可;
(3)过点P作PQ∥AB,故可得出CD∥PQ,AB∥PQ,由平形线的性质即可得出结论.
解:(1)由图可知,C(4,2),D(0,2).
故答案为:(4,2),(0,2);
(2)∵线段CD由线段BA平移而成,
∴AB∥CD,AB=CD,
∴四边形ABCD是平行四边形,
∴S平行四边形ABCD=4×2=8.
故答案为:8;
(3)证明:如图,过点P作PQ∥AB,
∵CD∥AB,
∴CD∥PQ,AB∥PQ,
∴∠CDP=∠1,∠BOP=∠2,
∴∠CDP+∠BOP=∠1+∠2=∠OPD.
练习册系列答案
相关题目