题目内容

如图,在同心圆中,大圆的弦AB与小圆相交于点C,D,且AC=CD=DB,若两圆的半径分别为4cm和2cm,则CD的长等于(  )
A.3cmB.2.5cmC.
5
cm
D.
6
cm

如图:
过点O作OE⊥AB于点E,则:AE=BE,CE=DE.
∵AC=CD=DB,
∴AC=2CE.
连接OA,OC,
设CE=a,则AC=2a,AE=3a.
在两个直角三角形中用勾股定理得到:
OE2=OA2-AE2=OC2-CE2
即:16-9a2=4-a2
解得:a=
6
2
(-
6
2
舍去)
∴CD=2CE=2a=
6

故选D.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网