题目内容
【题目】数学课堂探究性活动蔚然成风。张老师在课堂上设置一道习题:
(1)已知矩形ABCD和点P,当点P在BC上任一位置(如图1所示)时,探究PA2、PB2、PC2、PD2,之间的关系?直接写出结论,不必证明;
当P点在其它位置时,请同学们分组探究:
(2)当点P在矩形内部,如图2时,探究PA2、PB2、PC2、PD2之间的数量关系,请你把探究出的结论写出来,并给予证明。
(3)当点P在矩形外部,如图3时,继续探完PA2、PB2、PC2、PD2之间的数量关系,请你把探究出的结论直接写出来,不必证明。
【答案】(1)(2)(3)结论PA2+PC2=PB2+PD2,证明见解析
【解析】试题分析:(1)直接根据勾股定理即可得出结论;
(2)过点P作MN⊥AD于点M,交BC于点N,可在Rt△AMP,Rt△BNP,Rt△DMP和Rt△CNP分别用勾股定理表示出PA2,PC2,PB2,PD2,然后我们可得出PA2+PC2与PB2+PD2,我们不难得出四边形MNCD是矩形,于是,MD=NC,AM=BN,然后我们将等式右边的值进行比较发现PA2+PC2=PB2+PD2.如图(3)方法同(2),过点P作PQ⊥BC交AD,BC于O,易证.
试题解析:证明:(1)如图1中.在Rt△ABP中,AB2=AP2﹣BP2,Rt△PDC中,CD2=PD2﹣PC2.∵AB=CD,∴AP2﹣BP2=PD2﹣PC2,∴PA2+PC2=PB2+PD2;
(2)猜想:PA2+PC2=PB2+PD2.
如图2,过点P作MN⊥AD于点M,交BC于点N.
在矩形ABCD中,∵AD∥BC,MN⊥AD,∴MN⊥BC.在Rt△AMP中, PA2=PM2+MA2.在Rt△BNP中,PB2=PN2+BN2.在Rt△DMP中,PD2=DM2+PM2.在Rt△CNP中,PC2=PN2+NC2,∴PA2+PC2=PM2+MA2+PN2+NC2,PB2+PD2=PM2+DM2+BN2+PN2.∵MN⊥AD,MN⊥NC,DC⊥BC,∴四边形MNCD是矩形,∴MD=NC,同理AM=BN,∴PM2+MA2+PN2+NC2=PM2+DM2+BN2+PN2,即PA2+PC2=PB2+PD2.
(3)如图3,过点P作PQ⊥BC交AD,BC于O,Q.
∵在矩形ABCD中,AD∥BC,PQ⊥BC,∴PQ⊥AD.∵在Rt△AOP中,PA2=AO2+PO2.在Rt△PQB中,PB2=PQ2+QB2.在Rt△POD中,PD2=DO2+PO2.在Rt△CQP中,PC2=PQ2+QC2,∴PA2+PC2=PO2+OA2+PQ2+QC2,PB2+PD2=PQ2+QB2+DO2+PO2.∵PQ⊥AD,PQ⊥NC,DC⊥BC,∴四边形OQCD是矩形,∴OD=QC,同理AO=BQ,∴PA2+PC2=PB2+PD2.