题目内容
【题目】阅读下面的材料,回答问题:
解方程x4-5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:
设x2=y,那么x4=y2,于是原方程可变为y2-5y+4=0 ①,解得y1=1,y2=4.
当y=1时,x2=1,∴x=±1;
当y=4时,x2=4,∴x=±2;
∴原方程有四个根:x1=1,x2=-1,x3=2,x4=-2.
在由原方程得到方程①的过程中,利用换元法达到降次的目的,体现了数学的转化思想,请利用上述方法解方程
【答案】x1=-3,x2=2.
【解析】试题分析:(1)本题主要是利用换元法降次来达到把一元四次方程转化为一元二次方程,来求解,然后再解这个一元二次方程.利用题中给出的方法先把x2+x当成一个整体y来计算,求出y的值,再解一元二次方程.
试题解析:设x2+x=y,原方程可化为y2-4y-12=0,
解得y1=6,y2=-2.
由x2+x=6,得x1=-3,x2=2.
由x2+x=-2,得方程x2+x+2=0,
b2-4ac=1-4×2=-7<0,此时方程无实根.
所以原方程的解为x1=-3,x2=2.
【题目】“2018东台西溪半程马拉松”的赛事共有两项:A、“半程马拉松”、 B、“欢乐跑”。小明参加了该项赛事的志愿者服务工作, 组委会随机将志愿者分配到两个项目组.
(1)小明被分配到“半程马拉松”项目组的概率为________.
(2)为估算本次赛事参加“半程马拉松”的人数,小明对部分参赛选手作如下调查:
调查总人数 | 20 | 50 | 100 | 200 | 500 |
参加“半程马拉松”人数 | 15 | 33 | 72 | 139 | 356 |
参加“半程马拉松”频率 | 0.750 | 0.660 | 0.720 | 0.695 | 0.712 |
①请估算本次赛事参加“半程马拉松”人数的概率为_______.(精确到0.1)
②若本次参赛选手大约有3000人,请你估计参加“半程马拉松”的人数是多少?