题目内容

【题目】问题情境:在等腰直角三角形ABC中, 直线过点,过点为一锐角顶点作,且点在直线上(不与点重合),如图1 交于点,试判断的数量关系,并说明理由.探究展示:小星同学展示出如下正确的解法:

解:,证明如下:

过点,交于点

为等腰直角三角形

(依据

(依据

1)反思交流:上述证明过程中的“依据”和“依据”分别是指:

依据

依据

拓展延伸:(2)在图2中,延长线交于点,试判断的数量关系,并写出证明过程

3)在图3中,延长线交于点,试判断的数量关系,并写出证明过程.

【答案】1)依据:同角的余角相等,依据:全等三角形的对应边相等;(2,见解析;(3BD=DP,见解析

【解析】

1)根据余角的概念、全等三角形的性质解答;

2)作DFMNAB的延长线于F,证明△BDF≌△PDA,根据全等三角形的性质证明结论;

3)作DFMNBA的延长线于F,证明△BDF≌△PDA,根据全等三角形的性质证明结论.

依据:同角的余角相等

依据:全等三角形的对应边相等;

故答案为:同角的余角相等;全等三角形的对应边相等;

成立.

如图2,过点,的延长线于点

为等腰直角三角形,

∴∠FDB=∠ADP,

中,

∴∠FDB=ADP

BD=DP.

如答图3,过点,交的延长线于点

为等腰直角三角形,

中,

练习册系列答案
相关题目

【题目】阅读下列材料,完成相应的任务:

全等四边形根据全等图形的定义可知:四条边分别相等,四个角也分别相等的两个四边形全等.探索三角形全等的条件时,我们把两个三角形中一条边相等一个角相等称为一个条件.智慧小组的同学类比探索三角形全等条件的方法,探索四边形全等的条件,进行了如下思考:如图 1,四边形ABCD和四边形A'B'C'D'中,连接对角线ACA'C',这样两个四边形全等的问题就转化为ABCA'B'C'ACD A 'C 'D '的问题.若先给定ABCA'B'C'的条件,只要再增加2个条件使ACDA'C'D'即可推出两个四边形中四条边分别相等,四个角也分别相等,从而说明两个四边形全等.

按照智慧小组的思路,小明对图1中的四边形ABCD和四边形A'B'C'D'先给出如下条件:ABA'B',∠B=∠B'BCB'C',小亮在此基础上又给出“ADA'D'CDC'D'两个条件,他们认为满足这五个条件能得到四边形ABCD四边形A'B'C'D'”.

(1)请根据小明和小亮给出的条件,说明四边形ABCD四边形A'B'C'D'的理由;

(2)请从下面AB两题中任选一题作答,我选择______.

A.在材料中小明所给条件的基础上,小颖又给出两个条件“ADA'D',∠BCD=∠B'C'D',满足这五个条件_______(不能”)得到四边形 ABCD四边形A'B'C'D'”.

B.在材料中小明所给条件的基础上,再添加两个关于原四边形的条件(要求:不同于小亮的条件),使四边形ABCD四边形A'B'C'D',你添加的条件是:_____________________.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网