题目内容
【题目】如图①,A,B,C,D四点共圆,过点C的切线CE∥BD,与AB的延长线交于点E.
(1)求证:∠BAC=∠CAD;
(2)如图②,若AB为⊙O的直径,AD=6,AB=10,求CE的长;
(3)在(2)的条件下,连接BC,求 的值.
【答案】
(1)证明:连结OC,如图①,
∵CE为切线,
∴OC⊥CE,
∵CE∥BD,
∴OC⊥BD,
∴ ,
∴∠BAC=∠CAD;
(2)解:如图②,连结OC交BD于E,
由(1)得OC⊥BD,则BE=DE,
∵AB为直径,
∴∠D=90°,
∴BD= =8,
∴BE= BD=4,
在Rt△OBE中,OE= =3,
∵BE∥CE,
∴△OBE∽△OCE,
∴ ,即 ,
∴CE= ;
(3)解:∵OE=3,OC=5,
∴CE=5﹣3=2,
∵ ,
∴∠CDB=∠CAB,
∵tan∠CBE= = ,
∴tan∠CAB=tan∠CBE= ,
∵tan∠CAB= ,
∴ = .
【解析】(1)根据切线的性质和已知条件,得到OC⊥BD,根据垂径定理得到两弧相等,根据在同圆中相等的弧所对的圆周角相等,得到∠BAC=∠CAD;(2)由(1)知OC⊥BD,BE=DE;AB为直径,得到∠D=90°,根据勾股定理求出BD、BE、OE的长,由BE∥CE,得到△OBE∽△OCE,得到比例,求出CE的值;(3)根据在同圆中相等的弧所对的圆周角相等,得到∠CDB=∠CAB,由三角函数tan∠CBE的值,求出tan∠CAB=tan∠CBE的值,求出的值.
【考点精析】认真审题,首先需要了解切线的性质定理(切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径),还要掌握相似三角形的判定与性质(相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方)的相关知识才是答题的关键.