题目内容

【题目】[发现]如图∠ACB=∠ADB=90°,那么点D在经过A,B,C三点的圆上(如图①)

(1)[思考]如图②,如果∠ACB=∠ADB=a(a≠90°)(点C,D在AB的同侧),那么点D还在经过A, B,C三点的圆上吗?

(2)我们知道,如果点D不在经过A,B,C三点的圆上,那么点D要么在圆O外,要么在圆O内,以下该同学的想法说明了点D不在圆O外。
请结合图④证明点D也不在⊙O外.


[结论]综上可得结论:如图②,如果∠ACB=∠ADB=a(点C,D在AB的同侧),那么点D在经过A,B,C三点的圆上,即:点A、B、C、D四点共圆。
[应用]利用上述结论解决问题:
如图⑤,已知△ABC中,∠C=90°,将△ACB绕点A顺时针旋转一个角度得△ADE,连接BE CD,延长CD交BE于点F,

图⑤
①求证:点B、C、A、F四点共圆;②求证:BF=EF.

【答案】
(1)如图,假设点D在⊙O内,延长AD交⊙O于点E,连接BE;则∠AEB=∠ACB

∵∠ADB是△DBE的一个外角

∴∠ADB>∠AEB

∴∠ADB>∠ACB

这与条件∠ACB=∠ADB矛盾

∴点D不在⊙O内


(2)①证明:∵AC=AD,AB=AE,

∴∠ACD=∠ADC,∠ABE=∠AEB,

∵∠CAB=∠DAE,

∴∠CAD=∠BAE,

∵2∠ACD+∠CAD=180°,2∠ABE+∠BAE=180°,

∴∠ACD=∠ABE,

∴B、C、A、F四点共圆

②证明:∵B、C、A、F四点共圆,

∴∠BFA+∠BCA=180°,

∵∠ACB=90°,∴∠BFA=90°,

∴AF⊥BE,

∵AB=AE,

∴BF=EF


【解析】利用已知的结论,四边形的两对角线所分四个内角所成的8个角中,若所对同一条边的两个角相等,则这个四边形内接于圆,再结合旋转的性质,得出一对角相等即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网