题目内容
【题目】如图,四边形 ABCD 中,AD=BC,E、F、G 分别是 AB、CD、AC 的中点,若∠DAC=20 ,∠ACB=90 ,则 ∠FEG=( )
A. B. C. D.
【答案】A
【解析】分析:利用三角形的中位线定理可得EG、FG分别是△ABC和△ADC两个三角形的中位线,从而求出EG=FG,继而求得∠FGC和∠EGC的度数,再根据EG=FG,利用三角形内角和定理即可求出∠FEG的度数.
详解:
∵E、F、G分别是AB、CD、AC的中点,
∴EG、FG分别是△ABC和△ADC两个三角形的中位线,
∴EG∥BC,FG∥AD,且EG=FG=AD=,
∴∠FGC=∠DAC=20°,∠EGC=180°-∠ACB=90°,
∴∠EGF=∠FGC+∠EGC=110°,
又∵EG=FG,
∴∠FEG=(180°-∠EGF)=(180°-110°)=35°.
故选A.
练习册系列答案
相关题目
【题目】在一个不透明的口袋里装有仅颜色不同的黑、白两种颜色的球20只,某学习小组做摸球实验.将球搅匀后从中随机摸出一个球,记下颜色,再把它放回袋中,不断重复,下表是活动进行中记下的一组数据
摸球的次数 | 100 | 150 | 200 | 500 | 800 | 1000 |
摸到白球的次数 | 58 | 96 | 116 | 295 | 484 | 601 |
摸到白球的频率 | 0.58 | 0.64 | 0.58 | 0.59 | 0.605 | 0.601 |
(1)请你估计,当n很大时,摸到白球的频率将会接近 (精确到0.1).
(2)假如你去摸一次,你摸到白球的概率是 ,摸到黑球的概率是 .
(3)试估算口袋中黑、白两种颜色的球有多少只.