题目内容
【题目】对于坐标平面内的点,先将该点向右平移1个单位,再向上平移2个单位,这种点的运动称为点的斜平移,如点P(2,3)经1次斜平移后的点的坐标为(3,5).已知点A的坐标为(1,0).如图,点M是直线l上的一点,点A关于点M的对称点为点B,点B关于直线l的对称点为点C.若点B由点A经n次斜平移后得到,且点C的坐标为(7,6),则点B的坐标为_____及n的值为______.
【答案】(5,8) 4
【解析】
连接CM,根据中心对称可得:AM=BM,由轴对称可得:MB=MC,所以AM=CM=BM,进而可以证明△ABC是直角三角形,延长BC交x轴于点E,过点C作CF⊥AE于点F,可以证明△ACF是等腰直角三角形,可得E点坐标,进而可求直线BE的解析式,再根据点B由点A经n次斜平移得到,得点B(n+1,2n),代入直线解析式即可求得n的值,进而可得点B的坐标.
解:连接CM,
由中心对称可知:AM=BM,
由轴对称可知:MB=MC,
∴AM=CM=BM,
∴∠MAC=∠ACM,∠MBC=∠MCB,
∵∠MAC+∠ACM+∠MBC+∠MCB=180°,
∴∠ACB=90°,
∴△ABC是直角三角形.
延长BC交x轴于点E,过点C作CF⊥AE于点F,
∵A(1,0),C(7,6),
∴AF=CF=6,
∴△ACF是等腰直角三角形,
∵∠ACE=90°,∴∠AEC=45°,
∴E点坐标为(13,0),
设直线BE的解析式为y=kx+b,
∵点C,E在直线上,
∴,
解得,
∴y=﹣x+13,
∵点B由点A经n次斜平移得到,
∴点B(n+1,2n),
由2n=﹣n﹣1,解得n=4,
∴B(5,8).
故答案为:(5,8)、4.
练习册系列答案
相关题目