题目内容
【题目】添括号:2a-3b-c=2a-(________).
【答案】3b+c
【解析】
根据去括号法则和添括号法则进行分析即可.
2a-3b-c=2a-(3b+c),
故答案为:3b+c.
【题目】完成下面推理过程:如图,已知∠1=∠2,∠B=∠C,可推得AB//CD.理由如下:∵∠1=∠2 , 且∠1=∠CGD , ∴∠2=∠CG , ∴CE//BF , ∴∠=∠C两直线平行,同位角相等;又∵∠B=∠C(已知),∴∠BFD=∠B,∴AB//CD .
【题目】某市出租车收费标准是:起步价8元,当路程超过2km时,每1km收费1.8元,如果某出租车行驶x(x>2km),则司机应收费(单位:元)( )
A. 8+1.8(x﹣2)B. 8+1.8xC. 8﹣1.8xD. 8﹣1.8(x﹣2)
【题目】如图1,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(4,0)两点,与y轴相交于点C,连结BC,点P为抛物线上一动点,过点P作x轴的垂线l,交直线BC于点G,交x轴于点E.
(1)求抛物线的表达式;
(2)当P位于y轴右边的抛物线上运动时,过点C作CF⊥直线l,F为垂足,当点P运动到何处时,以P,C,F为顶点的三角形与△OBC相似?并求出此时点P的坐标;
(3)如图2,当点P在位于直线BC上方的抛物线上运动时,连结PC,PB,请问△PBC的面积S能否取得最大值?若能,请求出最大面积S,并求出此时点P的坐标,若不能,请说明理由.
【题目】如图,在平面直角坐标系xOy中,已知正比例函数y= x与一次函数y=﹣x+7的图象交于点A. (1)求点A的坐标;(2)设x轴上有一点P(a,0),过点P作x轴的垂线(垂线位于点A的右侧),分别交y= x和y=﹣x+7的图象于点B,C,连接OC.若BC= OA,求△OBC的面积.
【题目】将九年级部分男生掷实心球的成绩进行整理,分成5个小组(x表示成绩,单位:米).A组:5.25≤x<6.25;B组:6.25≤x<7.25;C组:7.25≤x<8.25;D组:8.25≤x<9.25;E组:9.25≤x<10.25,并绘制出扇形统计图和频数分布直方图(不完整).规定x≥6.25为合格,x≥9.25为优秀.
(1)这部分男生有多少人?其中成绩合格的有多少人?
(2)这部分男生成绩的中位数落在哪一组?扇形统计图中D组对应的圆心角是多少度?
(3)要从成绩优秀的学生中,随机选出2人介绍经验,已知甲、乙两位同学的成绩均为优秀,求他俩至少有1人被选中的概率.
【题目】如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于点D,DE⊥AD且与AC的延长线交于点E.
(1)求证:DC=DE;
(2)若tan∠CAB=,AB=3,求BD的长.
【题目】对于任意实数a、b,定义:a◆b=a2+ab+b2.若方程(x◆2)-5=0的两根记为m、n,则m2+n2=______.
【题目】已知:x3ya+1是关于x,y的六次单项式,试求下列代数式的值:(1)a2+2a+1(2)(a+1)2 .