题目内容
【题目】(1)问题背景:
如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC,CD上的点,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系.
小王同学探究此问题的方法是延长FD到点G,使DG=BE,连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是 ;
(2)探索延伸:
如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;
(3)结论应用:
如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等.接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进,1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇与指挥中心O之间夹角∠EOF=70°,试求此时两舰艇之间的距离.
(4)能力提高:
如图4,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°.若BM=1,CN=3,试求出MN的长.
【答案】(1)EF=BE+FD;(2)EF=BE+FD仍然成立;(3)210;(4)MN=.
【解析】试题分析:(1)由△AEF≌△AGF,得EF=GF,又由BE=DG,得EF=GF=DF+DG=DF+BE;(2)延长FD到点G,使DG=BE,连接AG,证明△ABE≌△ADG,再证△AEF≌△AGF,得EF=FG,即可得到答案;(3)连接EF,延长AE,BF相交于点C,根据探索延伸可得EF=AE+FB,即可计算出EF的长度;(4)在△ABC外侧作∠CAD=∠BAM,截取AD=AM,连接CD,DN,证明△ACD≌△ABM,得到CD=BM,再证MN=ND,则求出ND的长度,即可得到答案.
解:(1)由△AEF≌△AGF,得EF=GF,又由BE=DG,得EF=GF=DF+DG=DF+BE;
(2)EF=BE+FD仍然成立.
证明:如答图1,延长FD到点G,使DG=BE,连接AG,
∵∠B+∠ADC=180°,∠ADG+∠ADC=180°,∴∠B=∠ADG,
在△ABE与△ADG中,AB=AD,∠B=∠ADG,BE=DG,∴△ABE≌△ADG.
∴AE=AG,∠BAE=∠DAG.
又∵∠EAF=∠BAD,
∴∠FAG=∠FAD+∠DAG=∠FAD+∠BAE=∠BAD-∠EAF=∠BAD-∠BAD=∠BAD,
∴∠EAF=∠GAF.
在△AEF与△AGF中,AE=AG,∠EAF=∠GAF,AF=AF,
∴△AEF≌△AGF.∴EF=FG.
又∵FG=DG+DF=BE+DF.
∴EF=BE+FD.
(3)如答图2,连接EF,延长AE,BF相交于点C,在四边形AOBC中,
∵∠AOB=30°+90°+20°=140°,∠FOE=70°=∠AOB,
又∵OA=OB,∠OAC+∠OBC=60°+120°=180°,符合探索延伸中的条件,
∴结论EF=AE+FB成立.
∴EF=AE+FB=1.5×(60+80)=210(海里).
答:此时两舰艇之间的距离为210海里;
(4)如答图3,在△ABC外侧作∠CAD=∠BAM,截取AD=AM,连接CD,DN,
在△ACD与△ABM中,AC=AB,∠CAD=∠BAM,AD=AM,
则△ACD≌△ABM,∴CD=BM=1,∠ACD=∠ABM=45°,
∵∠NAD=∠NAC+∠CAD=∠NAC+∠BAM=∠BAC-∠MAN=45°,
∴∠MAD=∠MAN+∠NAD=90°=2∠NAD,
又∵AM=AD,∠NCD+∠MAD=(∠ACD+∠ACB)+90°=180°,
∴对于四边形AMCD符合探索延伸,
则ND=MN,
∵∠NCD=90°,CD=1,CN=3,
∴MN=ND=.