题目内容
【题目】如图,在△ABC中,∠ACB=90°,AC=BC,△ABC的高CD与角平分线AE相交点F,过点C作CH⊥AE于G,交AB于H.
(1)求∠BCH的度数;
(2)求证:CE=BH.
【答案】(1)22.5°;(2)见解析.
【解析】试题分析:(1)根据AE是角平分线,可得∠ACE的度数,再根据直角三角形两余角互余可得∠AEC的度数,再由CH⊥AE即可得;
(2)证明CF=CE,再证明△ACF≌△CBH即可得.
试题解析:(1)∵∠ACB=90°,AC=BC,
∴∠CAB=∠B=45°,
∵AE是△ABC的角平分线,
∴∠CAE=∠CAB=22.5°,
∴∠AEC=90°-∠CAE=67.5°,
∵CH⊥AE于G,
∴∠CGE=90°,
∴∠GCE=90°-∠AEC=22.5°;
(2)∵∠ACB=90°,AC=BC,CD是△ABC的高,
∴∠ACD=∠ACB=45°,
∴∠CFE=∠CAE+∠ACD=67.5°,
∴∠CFE=∠AEC,
∴CF=CE,
在△ACF和△CBH中,∴△ACF≌△CBH,∴CF=BH,
∴CE=BH.
练习册系列答案
相关题目