题目内容
【题目】如图,在等边△ABC中,把△ABC沿直线MN翻折,点A落在线段BC上的D点位置(D不与B、C重合),设∠AMN=α.
(1)用含α的代数式表示∠MDB和∠NDC,并确定的α取值范围;
(2)若α=45°,求BD:DC的值;
(3)求证:AMCN=ANBD.
【答案】(1)∠MDB==2α﹣60°,∠NDC=180°﹣2α,(30°<α<90°);(2)+1;(3)见解析
【解析】
(1)利用翻折不变性,三角形内角和定理求解即可解决问题.
(2)设BM=x.解直角三角形用x表示BD,CD即可解决问题.
(3)证明△BDM∽△CND,推出=,推出DMCN=DNBD可得结论.
(1)由翻折的性质可知∠AMN=∠DMN=α,
∵∠AMB=∠B+∠MDB,∠B=60°,
∴∠MDB=2α﹣60°,∠NDC=180°﹣∠MDB﹣∠MDN=180°﹣(2α﹣60°)﹣60°=180°﹣2α,(30°<α<90°)
(2)设BM=x.
∵α=45°,
∴∠AMD=90°,
∴∠BMD=90°,
∵∠B=60°,
∴∠BDM=30°,
∴BD=2x,DN=BDcos30°=x,
∴MA=MD=x,
∴BC=AB=x+x,
∴CD=BC﹣BD=x﹣x,
∴BD:CD=2x:(x﹣x)=+1.
(3)∵∠BDN=∠BDM+∠MDN=∠C+∠DNC,∠MDN=∠A=∠C=60°,
∴∠BDM=∠DNC,
∵∠B=∠C,
∴△BDM∽△CND,
∴=,
∴DMCN=DNBD,
∵DM=AM,ND=AN,
∴AMCN=ANBD.
【题目】一中和二中举行数学知识竞赛,参赛学生的竞赛得分统计结果如下表:
学校 | 参赛人数 | 平均数 | 中位数 | 方差 |
一中 | 45 | 83 | 86 | 82 |
二中 | 45 | 83 | 84 | 135 |
某同学分析上表后得到如下结论:.
①一中和二中学生的平均成绩相同;
②一中优秀的人数多于二中优秀的人数(竞赛得分85分为优秀);
③二中成绩的波动比一中小.
上述结论中正确的是___________. (填写所有正确结论的序号)
【题目】某水产养殖户进行小龙虾养殖. 已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,日销售量与时间第天之间的函数关系式为(,为整数),销售单价(元/)与时间第天之间满足一次函数关系如下表:
时间第天 | 1 | 2 | 3 | … | 80 |
销售单价(元/) | 49. 5 | 49 | 48. 5 | … | 10 |
(1)写出销售单价(元/)与时间第天之间的函数关系式;
(2)在整个销售旺季的80天里,哪一天的日销售利润最大?最大利润是多少?