题目内容
【题目】周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D竖起标杆DE,使得点E与点C、A共线.
已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.
【答案】河宽为17米.
【解析】
由题意先证明ABC∽ADE,再根据相似三角形的对应边成比例即可求得AB的长.
∵CB⊥AD,ED⊥AD,
∴∠CBA=∠EDA=90°,
∵∠CAB=∠EAD,
∴ABC∽ADE,
∴,
又∵AD=AB+BD,BD=8.5,BC=1,DE=1.5,
∴,
∴AB=17,
即河宽为17米.
练习册系列答案
相关题目
【题目】观察下表:
x | 2.1 | 2.2 | 2.3 | 2.4 | 2.5 | 2.6 | 2.7 | 2.8 | 2.9 |
y=x2﹣2x﹣2 | ﹣1.79 | ﹣1.56 | ﹣1.31 | ﹣1.04 | ﹣0.75 | ﹣0.44 | ﹣0.11 | 0.24 | 0.61 |
则一元二次方程x2﹣2x﹣2=0在精确到0.1时一个近似根是 ________ ,利用抛物线的对称性,可推知该方程的另一个近似根是________ .