题目内容

【题目】某加工厂以每吨3000元的价格购进50吨原料进行加工.若进行粗加工,每吨加工费用为600元,需 天,每吨售价4000元;若进行精加工,每吨加工费用为900元,需 天,每吨售价4500元.现将这50吨原料全部加工完.设其中粗加工x吨,获利y元.
(1)请完成表格并求出y与x的函数关系式(不要求写自变量的范围); 表一

粗加工数量/吨

3

7

x

精加工数量/吨

47

表二

粗加工数量/吨

3

7

x

粗加工获利/元

2800

精加工获利/元

25800

y与x的函数关系式
(2)如果必须在20天内完成,如何安排生产才能获得最大利润,最大利润是多少?

【答案】
(1)43;50﹣x;1200;28200;400x;600(50﹣x);y=﹣200x+30000
(2)解:设应把x吨进行粗加工,其余进行精加工,由题意可得

解得,x≥30,

∵y=﹣200x+30000,

∴当x=30时,y取得最大值,此时y=24000,

即应把30吨进行粗加工,另外20吨进行精加工,这样才能获得最大利润,最大利润为24000元


【解析】(1)由题意可得, 当x=7时,50﹣x=43,
当x=3时,粗加工获利为:(4000﹣600﹣3000)×3=1200,精加工获利为:(4500﹣3000﹣900)×47=28200,
故答案为:43、50﹣x;1200、28200,400x、600(50﹣x);
y与x的函数关系式是:y=400x+600(50﹣x)=﹣200x+30000,
即y与x的函数关系式是y=﹣200x+30000;
(1)根据题意可以将表格中的数据补充完整,并求出y与x的函数关系式;(2)根据(1)中的答案和题意可以列出相应的不等式,从而可以解答本题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网