题目内容
【题目】如图△OPQ是边长为 的等边三角形,若反比例函数y= 的图像过点P. (Ⅰ)求点P的坐标和k的值;
(Ⅱ)若在这个反比例函数的图像上有两个点(x1 , y1)(x2 , y2),且x1<x2<0,请比较y1与y2的大小.
【答案】解:(Ⅰ)∵△OPQ是边长为 的等边三角形, ∴点P的坐标为( , )
∵反比例函数的图像过点P,
∴ = ,
解得k= .
(Ⅱ)∵k= >0,
在这个反比例函数的图像上有两个点(x1 , y1)(x2 , y2),且x1<x2<0,
∴y1>y2
【解析】(Ⅰ)根据等边三角形的性质得到点P的坐标,根据待定系数法可求k的值;(Ⅱ)由k的值大于0,得到在每一个象限,y随x的增大而减小,利用增减性即可判断.
【考点精析】认真审题,首先需要了解等边三角形的性质(等边三角形的三个角都相等并且每个角都是60°).
【题目】某加工厂以每吨3000元的价格购进50吨原料进行加工.若进行粗加工,每吨加工费用为600元,需 天,每吨售价4000元;若进行精加工,每吨加工费用为900元,需 天,每吨售价4500元.现将这50吨原料全部加工完.设其中粗加工x吨,获利y元.
(1)请完成表格并求出y与x的函数关系式(不要求写自变量的范围); 表一
粗加工数量/吨 | 3 | 7 | x |
精加工数量/吨 | 47 |
表二
粗加工数量/吨 | 3 | 7 | x |
粗加工获利/元 | 2800 | ||
精加工获利/元 | 25800 |
y与x的函数关系式
(2)如果必须在20天内完成,如何安排生产才能获得最大利润,最大利润是多少?
【题目】某工厂一周计划每日生产某产品100吨,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的吨数记为正数,减少的吨数记为负数)
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
增减/吨 | ﹣1 | +3 | ﹣2 | +4 | +7 | ﹣5 | ﹣10 |
(1)生产量最多的一天比生产量最少的一天多生产多少吨?
(2)本周总生产量是多少吨?比原计划增加了还是减少了?增减数为多少吨?
(3)若本周总生产的产品全部由35辆货车一次性装载运输离开工厂,则平均每辆货车大约需装载多少吨?(结果精确到0.01吨)