题目内容
【题目】关于的方程有两个不相等的实数根,.
求的取值范围.
若,试说明此方程有两个负根.
在的条件下,若,求的值.
【答案】(1);(2)详见解析;(3).
【解析】
(1)根据判别式的意义得到△=4(k-1)2-4k2>0,然后解不等式即可;
(2)根据根与系数的关系得到x1+x2=2(k-1),x1x2=k2,由于k<,k≠0,所以x1+x2=2(k-1)<0,x1x2=k2>0,然后根据有理数乘法的运算性质得到x1,x2都为负数;
(3)先根据x1,x2都为负数,去绝对值得到-x1+x2=4,两边平方后变形得到(x1+x2)2-4x1x2=16,则4(k-1)2-4k2=16,然后解方程即可.
(1)根据题意得,
解得;
(2)∵,,
∴,,
∴,都为负数,即此方程有两个负根;
(3)∵,都为负数,,
∴,
∴,
∴,
∴.
练习册系列答案
相关题目