题目内容
【题目】如图,D是△ABC的边AB上一点,CE∥AB,DE交AC于点F,若FA=FC.
(1)求证:四边形ADCE是平行四边形;
(2)若AE⊥EC,EF=EC=1,求四边形ADCE的面积.
【答案】(1)见解析 (2)
【解析】(1)首先利用ASA得出△DAF≌△ECF,进而利用全等三角形的性质得出CE=AD,即可得出四边形ACDE是平行四边形;
(2)由AE⊥EC,四边形ADCE是平行四边形,可推出四边形ADCE是矩形,由F为AC的中点,求出AC,根据勾股定理即可求得AE,由矩形面积公式即可求得结论.
(1) ∵CE∥AB,
∴∠EDA=∠DEC.
∵FA=FC ∠DFA=∠CFE,
∴△ADF≌△CEF(ASA) ,
∴AF=CF,
∴四边形ADCE是平行四边形;
(2)∵AE⊥EC,
综合(1)四边形ADCE是平行四边形,
∴四边形ADCE是矩形,
∴DE=2EF=2 ∠DCE= ,
∴DC= ,
四边形ADCE的面积=CE·DC=.
练习册系列答案
相关题目