题目内容

【题目】如图,DABC的边AB上一点,CEAB,DEAC于点F,若FA=FC.

(1)求证:四边形ADCE是平行四边形;

(2)AEEC,EF=EC=1,求四边形ADCE的面积.

【答案】(1)见解析 (2)

【解析】(1)首先利用ASA得出DAF≌△ECF,进而利用全等三角形的性质得出CE=AD,即可得出四边形ACDE是平行四边形;

(2)由AEEC,四边形ADCE是平行四边形,可推出四边形ADCE是矩形,由FAC的中点,求出AC,根据勾股定理即可求得AE,由矩形面积公式即可求得结论.

(1) CEAB,

∴∠EDA=DEC.

FA=FC DFA=CFE,

∴△ADF≌△CEF(ASA) ,

AF=CF,

∴四边形ADCE是平行四边形

(2)AEEC,

综合(1)四边形ADCE是平行四边形,

∴四边形ADCE是矩形

DE=2EF=2 DCE=

DC=

四边形ADCE的面积=CE·DC=.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网