题目内容
【题目】如图1,二次函数y=ax2﹣3ax+c的图象与x轴交于点A、B,与y轴交于点c直线y=﹣x+4经过点B、C.
(1)求抛物线的表达式;
(2)过点A的直线y=kx+k交抛物线于点M,交直线BC于点N,连接AC,当直线y=kx+k平分△ABC的面积,求点M的坐标;
(3)如图2,把抛物线位于x轴上方的图象沿x轴翻折,当直线y=kx+k与翻折后的整个图象只有三个交点时,求k的取值范围.
【答案】(1)y=﹣x2+3x+4;(2)M(,);(3)k的取值范围是﹣5<k<0.
【解析】
(1)由直线y=-x+4知:点B、C的坐标分别为(4,0)、(0,4),则二次函数表达式为:y=ax2-3ax+4,将点A的坐标代入上式,即可求解;
(2)求出A的坐标,过点N作NG⊥AB于G,则根据直线y=kx+k平分△ABC的面积有 ,即可求出N的坐标,从而求出直线AM的解析式,再与抛物线解析式联立方程即可求M的坐标;
(3)根据翻折的现在知翻折部分的函数表达式是 ,根据翻折的部分图象只有一个交点,则联立方程后判别式为零即可.
(1)由直线y=﹣x+4知,点B、C的坐标分别为(4,0)、(0,4),
把点B、C的坐标分别为(4,0)、(0,4),
代入y=ax2﹣3ax+c,得解得
∴抛物线的表达式为:y=﹣x2+3x+4
(2)由y=﹣x2+3x+4,求得A(﹣1,0)
过点N作NG⊥AB于G,
∵直线y=kx+k平分△ABC的面积,
∴,
∴当x=2时,2=﹣x+4,∴x=2
∴N(2,2)
把N(2,2)代入y=kx+k,得,
∴直线AM的解析式为,
由解得
∴
(3)翻折部分的函数表达式是
当直线y=kx+k与翻折后的图象只有一个交点时,
由,得x2﹣3x﹣4=kx+k,
整理,得x2﹣(k+3)x﹣(k+4)=0
△=[﹣(k+3)]2﹣4×[﹣(k+4)]=k2+10k+25=0
解得k1=k2=﹣5
∴当直线y=kx+k与翻折后的整个图象只有三个交点时,k的取值范围是﹣5<k<0.