题目内容
【题目】如图,在中,
,以
为直径的
分别与
、
交于点
、
,过点
作
于点
.
(1)求证:是
的切线;
(2)若的半径为
,
,求阴影部分的面积.
【答案】(1)见解析;(2)S阴影=.
【解析】
(1)连接OD,先说明OD∥AC,再得到OD⊥DF,即可完成证明;
(2)连接OE,过O作OM⊥AC于M,先求出AE、OM的长和∠AOE的度数,再分别求出S△AOE和S扇形AOE,最后根据S△AOE-S扇形AOE解答即可;
(1)证明:连接OD,
∵OB=OD
∴∠ABC=∠ODB
∵AB=AC
∴∠ABC=∠ACB
∴∠ODB=∠ACB
∴OD∥AC
∵
∴OD⊥DF
∴DF是⊙O的切线
(2)解:连接OE,过O作OM⊥AC于M
∵DF⊥AC,∠CDF=15°
∴∠ABC=∠ACB=75°
∴∠BAC=30°.
∵OA=OE
∴∠AOE=120°
∵⊙O的半径为3
∴S扇形AOE==
∵∠BAC=30°
∵OA=OE=3
∴
∵OM⊥AC,
∴ AE=2AM=,
∴S△AOE=
∴S阴影=.
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】为积极响应“弘扬传统文化”的号召,某学校倡导全校1200名学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛.为了了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量”,根据调査结果绘制成的统计图(部分)如图
大赛结束后一个月,再次抽查这部分学生的周诗词诵背数量,绘制成如下统计表:
诵背数量 | 3首 | 4首 | 5首 | 6首 | 7首 | 8首 |
人数 | 10 | 10 | 15 | 40 | 25 | 20 |
请根据调查的信息分析
(1)学校团委一共抽取了多少名学生进行调查
(2)大赛前诵背4首人数所在扇形的圆心角为 ,并补充完条形统计图
(3)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数
【题目】 郑州外国语中学为了解学生课下阅读所用时间的情况,从各年级学生中随机抽查了一部分学生进行统计,下面是针对此次统计所制作的不完整的频数分布表和频数分布直方图,请根据图表信息回答下列问题:
组别 | 时间段(小时) | 频数 | 频率 |
1 | 0≤x<0.5 | 10 | 0.05 |
2 | 0.5≤x<1.0 | 20 | 0.10 |
3 | 1.0≤x<1.5 | 80 | b |
4 | 1.5≤x<2.0 | a | 0.35 |
5 | 2.0≤x<2.5 | 12 | 0.06 |
6 | 2.5≤x<3.0 | 8 | 0.04 |
(1)表中a=______b=______;
(2)请补全频数分布直方图;
(3)样本中,学生日阅读所用时间的中位数落在第______组;
(4)该校共有学生3000人,请估计学生日阅读量不少于1.5小时的人数.