题目内容
【题目】如图,抛物线与x轴交于A,B两点,与y轴交于点C(0,﹣2),点A的坐标是(2,0),P为抛物线上的一个动点,过点P作PD⊥x轴于点D,交直线BC于点E,抛物线的对称轴是直线x=﹣1.
(1)求抛物线的函数表达式;
(2)若点P在第二象限内,且PE=OD,求△PBE的面积.
(3)在(2)的条件下,若M为直线BC上一点,在x轴的上方,是否存在点M,使△BDM是以BD为腰的等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.
【答案】(1)y=x2+x﹣2;(2);(3)M坐标为(,)或(﹣,).
【解析】
(1)点A(2,0)、点B(-4,0),则函数的表达式为:y=a(x-2)(x+4)=a(x2+2x-8),即可求解;
(2)PE=OD,则PE=(x2+x-2-x+2)=(-x),求得:点D(-5,0),利用S△PBE=PE×BD=(x2+x-2-x+2)(-4-x),即可求解;
(3)分两种情况求解即可:①当BD=BM时,②当BD=DM(M′)时.
(1)点A的坐标是(2,0),抛物线的对称轴是直线x=﹣1,则点B(﹣4,0),
则函数的表达式为:y=a(x﹣2)(x+4)=a(x2+2x﹣8),
把点C(0,-2)代入得:﹣8a=﹣2,解得:a=,
故抛物线的表达式为:y=x2+x﹣2;
(2)将点B、C的坐标代入一次函数表达式:y=mx+n并解得:
直线BC的表达式为:y=﹣x﹣2,则tan∠ABC=,则sin∠ABC=,
设点D(x,0),则点P(x,x2+x﹣2),点E(x,﹣x﹣2),
∵PE=OD,OD=﹣x,
∴PE=(x2+x﹣2+x+2)=x2+x,
即x2+x=-x,
解得:x=0或﹣5(舍去x=0),
即点D(﹣5,0),
S△PBE=×PE×BD=(x2+x﹣2+x+2)(﹣4﹣x)=;
(3)由题意得:△BDM是以BD为腰的等腰三角形,
①当BD=BM时,过点M作MH⊥x轴于点H,
BD=1=BM,
则MH=yM=BMsin∠ABC=1×=,
则xM=,
故点M(,);
②当BD=DM(M′)时,
同理可得:点M′(﹣,);
故点M坐标为(﹣,﹣)或(﹣,).
【题目】綦江区某中学的国旗护卫队需从甲、乙两队中选择一队身高比较整齐的队员担任护旗手,每队中每个队员的身高(单位:cm)如下:
甲队 | 178 | 177 | 179 | 179 | 178 | 178 | 177 | 178 | 177 | 179 |
乙队:
分析数据:两组样本数据的平均数、中位数、众数、方差如下表所示:
整理、描述数据:
平均数 | 中位数 | 众数 | 方差 | |
甲队 | 178 | 178 | b | 0.6 |
乙队 | 178 | a | 178 | c |
(1)表中a=______,b=______,c=______;
(2)根据表格中的数据,你认为选择哪个队比较好?请说明理由.