题目内容
【题目】已知, , 与成正比例, 与成反比例,并且当时, ,当时, .
()求关于的函数关系式.
()当时,求的值.
【答案】();(), .
【解析】分析:(1)首先根据与x成正比例, 与x成反比例,且当x=1时,y=4;当x=2时,y=5,求出 和与x的关系式,进而求出y与x的关系式,(2)根据(1)问求出的y与x之间的关系式,令y=0,即可求出x的值.
本题解析:
()设, ,
则,
∵当时, ,当时, ,
∴
解得, ,
∴关于的函数关系式为.
()把代入得,
,
解得: , .
点睛:本题考查了用待定系数法求反比例函数的解析式:(1)设出含有待定系数的反比例函数解析式y=kx(k为常数,k≠0);(2)把已知条件(自变量与对应值)代入解析式,得到待定系数的方程;(3)解方程,求出待定系数;(4)写出解析式.
【题型】解答题
【结束】
24
【题目】如图,菱形的对角线、相交于点,过点作且,连接、,连接交于点.
(1)求证:;
(2)若菱形的边长为2, .求的长.
【答案】(1)证明见解析(2)
【解析】试题分析:(1)先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出∠COD=90°,证明OCED是矩形,可得OE=CD即可;
(2)根据菱形的性质得出AC=AB,再根据勾股定理得出AE的长度即可.
(1)证明:在菱形ABCD中,OC=AC.
∴DE=OC.
∵DE∥AC,
∴四边形OCED是平行四边形.
∵AC⊥BD,
∴平行四边形OCED是矩形.
∴OE=CD.
(2)在菱形ABCD中,∠ABC=60°,
∴AC=AB=2.
∴在矩形OCED中,
CE=OD=.
在Rt△ACE中,
AE=.
练习册系列答案
相关题目