题目内容
【题目】如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.
(1)求证:BE=CF.
(2)若AB=CF,∠B=40°,求∠D的度数.
【答案】(1)证明见解析;(2)70°
【解析】
)由平行线的性质得出,结合已知条件,依据AAS即可证明≌;
由得:,≌,由全等三角形的性质得出,证出,由等腰三角形的性质和三角形内角和定理即可得出结果.
(1)证明:∵AB∥CD,
∴∠B=∠C,
∵在△ABE和△DCF中,
∴△ABE≌△DCF(AAS),
∴BE=CF;
(2)解:由(1)得:∠C=∠B=40°,△ABE≌△DCF,
∴AB=CD,
又∵AB=CF,
∴CD=CF,
∴∠D=∠CFD=(180°﹣40°)=70°.
【题目】甲、乙两校各有200名体训队队员,为了解这两校体训队员的体能,进行了抽样调查过程如下,请补充完整
收集数据:从甲、乙两个学校各随机抽取20名体课队员,讲行体能测试,测试成绩(百分制)如下:
甲 78 86 74 81 75 76 87 70 75 90 75 79 81 70 74 80 86 69 83 77
乙 93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 80 70 40
整理、描述数据:按如下分数段整理、描述这两组样本数据:
成绩x人数 | 40≤x≤49 | 50≤x≤59 | 60≤x≤69 | 70≤x≤79 | 80≤x≤89 | 90≤x≤100 |
甲校 | 0 | 0 | 1 | 11 | 7 | 1 |
乙校 | 1 | 0 | 0 | 7 | 10 | 2 |
(说明:成绩80分及以上为体能优秀,70~79分为体能良好,60~69为体能合格,60以下为体能不合格)
分析数据:两组样本数据的平均数、中位数、众数如下表所示
学校 | 平均数 | 中位数 | 众数 | 优秀率 |
甲 | 78.3 | 77.5 | b | 40% |
乙 | 78 | a | 81 | c |
问题解决:(1)直接写出a,b,c的值;
(2)估计甲校90分及以上的学生有多少人.
(3)得出结论:通过以上数据的分析,你认为哪个学校的体训队学生的体能水平更高,并从两个不同的角度说明推断的合理性.