题目内容
【题目】如图,在△ABC中,∠CBD、∠BCE是△ABC的外角,BP平分∠ABC,CP平分∠ACB,BQ平分∠CBD,CQ平分∠BCE.
(1)∠PBQ的度数是 ,∠PCQ的度数是 ;
(2)若∠A=70°,求∠P和∠Q的度数;
(3)若∠A=α,则∠P= ,∠Q= (用含α的代数式表示).
【答案】(1)90°、90°;(2)125°,55°;(3)90°+α、90°﹣α.
【解析】
(1)由角平分线知∠PBC=∠ABC、∠QBC=∠DBC,由∠ABC+∠DBC=180°知∠PBQ=∠PBC+∠QBC=(∠ABC+∠DBC)=90°,同理可得∠PCQ的度数;
(2)由∠P=180°﹣∠PBC﹣∠PCB=180°﹣∠ABC﹣∠ACB=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)可得∠P度数,由∠Q=180°﹣∠QBC﹣∠QCB=180°﹣(180°﹣∠ABC)﹣(180°﹣∠ACB)=(∠ABC+∠ACB)=(180°﹣∠A)可得∠Q度数;
(3)与(2)同理可得.
(1)∵BP平分∠ABC,CP平分∠ACB,BQ平分∠CBD,CQ平分∠BCE.
∴∠PBC=∠ABC、∠QBC=∠DBC、∠PCB=∠ACB、∠QCB=∠BCE,
∵∠ABC+∠DBC=180°、∠ACB+∠BCE=180°,
∴∠PBQ=∠PBC+∠QBC=(∠ABC+∠DBC)=90°,
∠PCQ=∠PCB+∠QCB=(∠ACB+∠BCE)=90°,
故答案为:90°、90°;
(2)∵∠PBC=∠ABC、∠PCB=∠ACB,
∴∠P=180°﹣∠PBC﹣∠PCB
=180°﹣∠ABC﹣∠ACB
=180°﹣(∠ABC+∠ACB)
=180°﹣(180°﹣∠A)
=180°﹣(180°﹣70°)
=125°;
∵∠QBC=∠ABC、∠QCB=∠ACB,
∴∠Q=180°﹣∠QBC﹣∠QCB
=180°﹣(180°﹣∠ABC)﹣(180°﹣∠ACB)
=(∠ABC+∠ACB)
=(180°﹣∠A)
=(180°﹣70°)
=55°.
(3)与(2)同理知∠P=180°﹣(180°﹣∠A)=90°+∠A=90°+α,
∠Q=(180°﹣∠A)=90°﹣∠A=90°﹣α,
故答案为:90°+α、90°﹣α.