题目内容
【题目】如图,已知在Rt△ABC中,∠ACB = 90o,AC =6,BC = 8,点F在线段AB上,以点B为圆心,BF为半径的圆交BC于点E,射线AE交圆B于点D(点D、E不重合).
(1)如果设BF = x,EF = y,求y与x之间的函数关系式,并写出它的定义域;
(2)如果,求ED的长;
(3)联结CD、BD,请判断四边形ABDC是否为直角梯形?说明理由.
【答案】(1)(0<x<8);(2)ED=;(3)四边形ABDC不可能为直角梯形.
【解析】试题分析:(1)在Rt△ABC中由勾股定理得到AB=10.过E作EH⊥AB,垂足是H,易得:EH= ,BH= ,FH= .在Rt△EHF中,由勾股定理即可得到结论;
(2)取弧ED的中点P,联结BP交ED于点G.由 ,P是弧ED的中点,得到弧EP=弧EF=弧PD,进而得到∠FBE =∠EBP =∠PBD.由垂径定理得BG⊥ED,ED =2EG =2DG.易证△BEH≌△BEG,得到EH=EG=GD= .解Rt△CEA得到CE,BE的长,从而得到结论.
(3)四边形ABDC不可能为直角梯形.分两种情况讨论:①当CD∥AB时,如果四边形ABDC是直角梯形,只可能∠ABD =∠CDB = 90o.由,即可得到结论.
②当AC∥BD时,如果四边形ABDC是直角梯形,只可能∠ACD =∠CDB = 90o.由∠ABD> 90o.即可得到结论.
试题解析:解:(1)在Rt△ABC中,AC=6,BC=8,∠ACB=90°,∴AB=10.
过E作EH⊥AB,垂足是H,易得:EH= ,BH= ,FH= .
在Rt△EHF中, ,∴(0<x<8).
(2)取弧ED的中点P,联结BP交ED于点G.
∵ ,P是弧ED的中点,∴弧EP=弧EF=弧PD,∴∠FBE =∠EBP =∠PBD.
∵弧EP=弧EF ,BP过圆心,∴BG⊥ED,ED =2EG =2DG.
又∵∠CEA =∠DEB,∴∠CAE=∠EBP=∠ABC.
又∵BE是公共边,∴△BEH≌△BEG,∴EH=EG=GD= .
在Rt△CEA中,∵AC = 6,BC=8,tan∠CAE=tan∠ABC=,∴CE=ACtan∠CAE==,∴BE==,∴ED=2EG= ==.
(3)四边形ABDC不可能为直角梯形.
①当CD∥AB时,如果四边形ABDC是直角梯形,只可能∠ABD =∠CDB = 90o.
在Rt△CBD中,∵BC=8,∴CDcos∠BCD=,BD=BCsin∠BCD= =BE,∴, ,∴,∴CD不平行于AB,与CD∥AB矛盾,∴四边形ABDC不可能为直角梯形.
②当AC∥BD时,如果四边形ABDC是直角梯形,只可能∠ACD =∠CDB = 90o.
∵AC∥BD,∠ACB = 90o,∴∠ACB =∠CBD = 90o,∴∠ABD =∠ACB +∠BCD > 90o.
与∠ACD =∠CDB = 90o矛盾.
∴四边形ABDC不可能为直角梯形.
【题目】小颖和小红两位同学在做投掷骰子(质地均匀的正方体)实验,他们共做了次实验,实验的结果如下:
朝上的点数 | ||||||
出现的次数 |
(1)计算“点朝上”的频率和“点朝上”的频率.
(2)小颖说:“根据实验得出,出现点朝上的机会最大”;小红说:“如投掷次,那么出现 点朝上的次数正好是次.”小颖和小红的说法正确吗?为什么?