题目内容
【题目】矩形纸片ABCD,AB=4,BC=12,E、F分别是AD、BC边上的点,ED=3.将矩形纸片沿EF折叠,使点C落在AD边上的点G处,点D落在点H处.
(1)矩形纸片ABCD的面积为
(2)如图1,连结EC,四边形CEGF是什么特殊四边形,为什么?
(3)M,N是AB边上的两个动点,且不与点A,B重合,MN=1,求四边形EFMN周长的最小值.(计算结果保留根号)
【答案】(1)48;(2)四边形CEGF是菱形,理由见详解;(3)四边形EFMN周长的最小值为.
【解析】
(1)矩形面积=长×宽,即可得到答案,
(2)利用对角线互相垂直平分的四边形是菱形进行证明,先证对角线相互垂直,再证对角线互相平分.
(3)明确何时四边形的周长最小,利用对称、勾股定理、三角形相似,分别求出各条边长即可.
解:(1)S矩形ABCD=ABBC=12×4=48,
故答案为:48.
(2)四边形CEGF是菱形,
证明:连接CG交EF于点O,
由折叠得:EF⊥CG,GO=CO,
∵ABCD是矩形,
∴AD∥BC,
∴∠OGE=∠OCF,∠GEO=∠CFO
∴△GOE≌△COF(AAS),
∴OE=OF
∴四边形CEGF是菱形.
因此,四边形CEGF是菱形.
(3)作F点关于点B的对称点F1,则NF1=NF,
当NF1∥EM时,四边形EFMN周长最小,
设EC=x,由(2)得:GE=GF=FC=x,
在Rt△CDE中,∵ED2+DC2=EC2,
∴32+42=EC2,
∴EC=5=GE=FC=GF,
在Rt△GCD中,,
∴OC=GO=,
在Rt△COE中,,
∴EF=2OE=,
当NF1∥EM时,易证△EAM∽△F1BN,
∴,
设AM=y,则BN=4-1-y=3-y,
∴,解得:,
此时,AM=,BN=,
由勾股定理得:
,
,
∴四边形EFMN的周长为:
故四边形EFMN周长的最小值为:.