题目内容
【题目】如图,⊙O为锐角△ABC的外接圆,半径为5.
(1)用尺规作图作出∠BAC的平分线,并标出它与劣弧BC的交点E(保留作图痕迹,不写作法);
(2)若(1)中的点E到弦BC的距离为3,求弦CE的长.
【答案】(1)画图见解析;(2)CE=
【解析】(1)以点A为圆心,以任意长为半径画弧,分别与AB、AC有交点,再分别以这两个交点为圆心,以大于这两点距离的一半为半径画弧,两弧交于一点,过点A与这点作射线,与圆交于点E ,据此作图即可;
(2)连接OE交BC于点F,连接OC、CE,由AE平分∠BAC,可推导得出OE⊥BC,然后在Rt△OFC中,由勾股定理可求得FC的长,在Rt△EFC中,由勾股定理即可求得CE的长.
(1)如图所示,射线AE就是所求作的角平分线;
(2)连接OE交BC于点F,连接OC、CE,
∵AE平分∠BAC,
∴,
∴OE⊥BC,EF=3,∴OF=5-3=2,
在Rt△OFC中,由勾股定理可得FC==,
在Rt△EFC中,由勾股定理可得CE==.
练习册系列答案
相关题目