题目内容
【题目】如图,Rt△ABC中,∠C=90°,AB=5,AC=3,D是AB的中点,E是直线BC上一点,把△BDE沿直线ED翻折后,点B落在点F处,当FD⊥BC时,线段BE的长为_____.
【答案】或5
【解析】
分点F在BC下方,点F在BC上方两种情况讨论,由勾股定理可BC=4,由平行线分线段成比例可得,求出FP,由勾股定理可求BE的长.
解:若点F在BC下方时,DF与BC交于点P,如图1所示:
∵∠C=90°,AC=3,AB=5,
∴BC===4,
∵点D是AB的中点,
∴BD=BA=,
∵FD⊥BC,∠C=90°
∴FD∥AC
∴,
∴BP=PC=BC=2,DP=AC=,
∵△BDE沿直线ED翻折,
∴FD=BD=,FE=BE,
∴FP=FD﹣DP=1,
∴在Rt△FPE中,EF2=FP2+PE2,
∴BE2=1+(2﹣BE)2,
解得:BE=;
若点F在BC上方时,FD的延长线交BC于点P,如图2所示:
FP=DP+FD=+=4,
在Rt△EFP中,EF2=FP2+EP2,
∴BE2=16+(BE﹣2)2,
解得:BE=5
故答案为:或5.
练习册系列答案
相关题目
【题目】某商店购进了一种新款小电器,为了寻找合适的销售价格,进行了为期5周的试营销,试营销的情况如表所示:
第1周 | 第2周 | 第3周 | 第4周 | 第5周 | |
售价/(元/台) | 50 | 40 | 60 | 55 | 45 |
销售/台 | 360 | 420 | 300 | 330 | 390 |
已知该款小电器的进价每台30元,设该款小电器每台的售价为x元,每周的销量为y台.
(1)观察表中的数据,推断y与x满足什么函数关系,并求出这个函数关系式;
(2)若想每周的利润为9000元,则其售价应定为多少元?
(3)若每台小电器的售价不低于40元,但又不能高于进价的2倍,则如何定价才能更快地减少库存?此时每周最多可销售多少台?