题目内容
【题目】如图,点E是△ABC的内心,AE的延长线与BC相交于点F,与△ABC的外接圆相交于点D
(1)求证:△BFD∽△ABD;
(2)求证:DE=DB.
【答案】(1)证明见解析;(2)证明见解析.
【解析】
试题分析:(1)先根据内心的性质得出∠BAD=∠CAD,再由圆周角定理得出∠CAD=∠CBD,故可得出∠BAD=∠CBD,进而可得出结论;
(2)连接BE,根据点E是△ABC的内心得出∠ABE=∠CBE.由∠CBD=∠BAD可得出∠BAD+∠ABE=∠CBE+∠CBD,进而可得出结论.
试题解析:(1)证明:∵点E是△ABC的内心,∴∠BAD=∠CAD.
∵∠CAD=∠CBD,∴∠BAD=∠CBD.
∵∠BDF=∠ADB,∴△BFD∽△ABD;
(2)证明:连接BE,∵点E是△ABC的内心,∴∠ABE=∠CBE.
又∵∠CBD=∠BAD,∴∠BAD+∠ABE=∠CBE+∠CBD.
∵∠BAD+∠ABE=∠BED,∠CBE+∠CBD=∠DBE,即∠DBE=∠BED,∴DE=DB.
练习册系列答案
相关题目