题目内容
【题目】如图,AB是⊙O的直径,C,G是⊙O上两点,且AC=CG,过点C的直线CD⊥BG于点D,交BA的延长线于点E,连接BC,交OD于点F.
(1)求证:CD是⊙O的切线.
(2)若,求∠E的度数.
(3)连接AD,在(2)的条件下,若CD=,求AD的长.
【答案】(1)证明见试题解析;(2)30°;(3).
【解析】
试题分析:(1)如图1,连接OC,AC,CG,则有∠ABC=∠CBG,根据同圆的半径相等得到OC=OB,于是得到∠OCB=∠OBC,由等量代换得到∠OCB=∠CBG,根据平行线的判定得到OC∥BG,即可得到结论;
(2)由OC∥BD,得到△OCF∽△BDF,△EOC∽△EBD,得到,,根据直角三角形的性质即可得到结论;
(3)如图2,过A作AH⊥DE于H,解直角三角形得到BD,DE,BE,在Rt△DAH中,用勾股定理即可得到AD的长.
试题解析:(1)如图1,连接OC,AC,CG,∵AC=CG,∴,∴∠ABC=∠CBG,∵OC=OB,∴∠OCB=∠OBC,∴∠OCB=∠CBG,∴OC∥BG,∵CD⊥BG,∴OC⊥CD,∴CD是⊙O的切线;
(2)∵OC∥BD,∴△OCF∽△BDF,△EOC∽△EBD,∴,∴,∵OA=OB,∴AE=OA=OB,∴OC=OE,∵∠ECO=90°,∴∠E=30°;
(3)如图2,过A作AH⊥DE于H,∵∠E=30°,∴∠EBD=60°,∴∠CBD=∠EBD=30°,∵CD=,∴BD=3,DE=,BE=6,∴AE=BE=2,∴AH=1,∴EH=,∴DH=,在Rt△DAH中,AD===.
【题目】老师在计算学期平均分的时候按照如下标准,作业占10%,测验占20%,期中考试占30%,期末考试占40%,小丽的成绩如表所示,则小丽的平均分是________分.
学生 | 作业 | 测验 | 期中考试 | 期未考试 |
小丽 | 80 | 75 | 70 | 90 |