题目内容
【题目】已知等边三角形ABC的边长为12,点P为AC上一点,点D在CB的延长线上,且BD=AP,连接PD交AB于点E,PE⊥AB于点F,则线段EF的长为( )
A. 6 B. 5
C. 4.5 D. 与AP的长度有关
【答案】A
【解析】
作DQ⊥AB,交直线AB的延长线于点Q,连接DE,PQ,根据全等三角形的判定定理得出△APE≌△BDQ,再由AE=BQ,PE=QD且PE∥QD,可知四边形PEDQ是平行四边形,进而可得出EF=AB,由等边△ABC的边长为12可得出DE=6.
解;如图,作DQ⊥AB,交AB的延长线于点F,连接DE,PQ,
又∵PE⊥AB于E,
∴∠BQD=∠AEP=90°,
∵△ABC是等边三角形,
∴∠A=∠ABC=∠DBQ=60°,
在△APE和△BDQ中,
,
∴△APE≌△BDQ(AAS),
∴AE=BQ,PE=QD且PE∥QD,
∴四边形PEDQ是平行四边形,
∴EF=EQ,
∵EB+AE=BE+BQ=AB,
∴EF=AB,
又∵等边△ABC的边长为12,
∴EF=6.
故选:A.