题目内容
【题目】(1)观察推理:如图1,△ABC中,∠ACB=90°,AC=BC,直线l过点C,点A、B在直线l同侧,BD⊥l,AE⊥l,垂足分别为D、E.求证:△AEC≌△CDB;
(2)类比探究:如图2,Rt△ABC中,∠ACB=90°,AC=6,将斜边AB绕点A逆时针旋转90°至AB′,连接B′C,求△AB′C的面积.
(3)拓展提升:如图3,等边△EBC中,EC=BC=4cm,点O在BC上,且OC=3cm,动点P从点E沿射线EC以2cm/s速度运动,连结OP,将线段OP绕点O逆时针旋转120°得到线段OF.要使点F恰好落在射线EB上,求点P运动的时间ts.
【答案】(1)详见解析;(2)18;(3)2.5秒.
【解析】
(1)利用同角的余角相等判断出∠CAE=∠BCD,即可得出结论;
(2)先作出高,进而判断出△ABC≌△B'AG,求出B'G,最后用三角形的面积公式即可得出结论;
(3)利用等式的性质得出,∠CPO=∠BOF,进而判断出△BOF≌△PCO,即可求出CP=1,即可得出结论.
(1)∵BD⊥l,AE⊥l,
∴∠AEC=∠CDB=90°,
∴∠CAE+∠ACE=90°,
∵∠ACB=90°,
∴∠ACE+∠BCD=90°,
∴∠CAE=∠BCD,
在△ACE和△CBD中,,
∴△ACE≌△CBD;
(2)如图2,过点B'作B'G⊥AC于G,
∴∠B'AG+∠AB'G=90°,
∵∠BAB'=90°,
∴∠BAC+∠B'AG=90°,
∴∠AB'G=∠BAC,由旋转知,AB=AB',
在△ABC和△B'AG中,,
∴△ABC≌△B'AG,
∴B'G=AC=6,
∴S△ACB'=AC×B'G=18;
(3)如图3,
由旋转知,OP=OF,
∵△BCE是等边三角形,
∴∠CBE=∠BCE=60°,
∴∠OCP=∠FBO=120°,∠CPO+∠COP=60°,
∵∠POF=120°,
∴∠COP+∠BOF=60°,
∴∠CPO=∠BOF,
在△BOF和△PCO中,,
∴△BOF≌△PCO,
∴CP=OB,
∵EC=BC=4cm,OC=3cm,
∴OB=BC﹣OC=1,
∴CP=1,
∴EP=CE+CP=5,
∴点P运动的时间t=5÷2=2.5秒.