题目内容

如图,抛物线y=x2+bx+c过点A(﹣4,﹣3),与y轴交于点B,对称轴是x=﹣3,请解答下列问题:

(1)求抛物线的解析式.
(2)若和x轴平行的直线与抛物线交于C,D两点,点C在对称轴左侧,且CD=8,求△BCD的面积.
注:抛物线y=ax2+bx+c(a≠0)的对称轴是

解:(1)∵抛物线对称轴是x=﹣3,∴,解得b=6。
∴抛物线的解析式为y=x2+6x+c 
把点A(﹣4,﹣3)代入y=x2+6x+c得:16﹣24+c=﹣3,解得c=5。
∴抛物线的解析式是y=x2+6x+5。
(2)∵CD∥x轴,∴点C与点D关于x=﹣3对称。

∵点C在对称轴左侧,且CD=8,∴点C的横坐标为﹣7。
∴点C的纵坐标为(﹣7)2+6×(﹣7)+5=12。
∵点B的坐标为(0,5),
∴△BCD中CD边上的高为12﹣5=7。
∴△BCD的面积=×8×7=28。

解析试题分析:(1)根据对称轴是x=﹣3,求出b=6,把点A(﹣4,﹣3)代入y=x2+bx+c得16﹣4b+c=﹣3,即可得出答案。
(2)根据CD∥x轴,得出点C与点D关于x=﹣3对称,根据点C在对称轴左侧,且CD=8,求出点C的横坐标和纵坐标,再根据点B的坐标为(0,5),求出△BCD中CD边上的高,即可求出△BCD的面积。 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网