题目内容
【题目】如图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成4个小长方形,然后按图2的形状拼成一个正方形.
(1)图2中阴影部分的面积为 ;
(2)观察图2,请你写出式子(m+n)2,(m-n)2,mn之间的等量关系: ;
(3)若x+y=-6,xy=2.75,则x-y= ;
(4)实际上有许多恒等式可以用图形的面积来表示,如图3,它表示等式: .
【答案】(1)(m-n);(2)(m+n)-(m-n)=4mn;(3)±5;(4)(2a+b)(a+b)=2a+3ab+b.
【解析】试题分析:
试题解析:(1)利用矩形面积公式计算.(2)根据矩形面积公式可得到m,n关系.(3)利用(2)的公式计算.(4)根据矩形面积公式分别用整体方法和部分的和的方法列等式.
试题解析:
(1)图2中阴影部分的边长是m-n,面积为(m-n)2;
(2)观察图2,请你写出式子(m+n)2,(m-n)2,mn之间的等量关系:大正方形面积是(m+n)2 ,阴影部分面积是(m-n)2 ,四个矩形面积是4mn ,所以(m+n)2-(m-n)2=4mn;
(3)因为x+y=-6,xy=2.75,利用公式(m+n)2-(m-n)2=4mn,则+,解得x-y=±5.
(4)实际上有许多恒等式可以用图形的面积来表示,如图3,分别求每个小部分图形的面积求和2a2+3ab+b2等于总体面积(2a+b)(a+b),
它表示等式:(2a+b)(a+b)=2a2+3ab+b2.
练习册系列答案
相关题目