题目内容
如图,在矩形ABCD中,AB=3,AD=4,点P在AB上,PE⊥AC于E,PF⊥BD于F,则PE+PF等于( )
A.
| B.
| C.
| D.
|
设AP=x,PB=3-x.
∵∠EAP=∠EAP,∠AEP=∠ABC;
∴△AEP∽△ABC,故
=
①;
同理可得△BFP∽△DAB,故
=
②.
①+②得
=
,
∴PE+PF=
.
故选B.
∵∠EAP=∠EAP,∠AEP=∠ABC;
∴△AEP∽△ABC,故
x |
5 |
PE |
4 |
同理可得△BFP∽△DAB,故
3-x |
5 |
PF |
4 |
①+②得
3 |
5 |
PE+PF |
4 |
∴PE+PF=
12 |
5 |
故选B.
练习册系列答案
相关题目