题目内容
【题目】在中,.
(1)如图.分别过、两点作经过点的直线的垂线,垂足分别为、,求证:.
(2)如图,是边上一点,,,求的值.
(3)如图,是边延长线上一点,,,,,直接写出的值.
【答案】(1)见解析 (2) (3)
【解析】
(1)由题意,只要证明△AMB∽△BNC,即可得到结论成立;
(2)过点作交于点,过作于点,先证明,得到,再证明,即可得到结论成立;
(3)作AG⊥BE于G,作CH⊥BE于点H,先判断出,再同(2)的方法,即可得出结论.
证明:(1):,
,
又,
∴∠M=∠N=90°,∠1+∠3=90°,
∴∠1=∠2.
,
;
(2)过点作交于点,过作img src="http://thumb.zyjl.cn/questionBank/Upload/2020/07/22/04/8078862f/SYS202007220422182855736715_DA/SYS202007220422182855736715_DA.007.png" width="72" height="19" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />于点,
,,
,
,
,
,
设,,则,,
又,
,
,
又,,
;
,
解得:,
;
(3)如图,作AG⊥BE于G,作CH⊥BE于点H,
在Rt△ABC中,,
∵∠DEB=90°,
∴CH∥AG∥DE,
∴,
同(1)的方法得,△ABG∽△BCH
∴,
设BG=4m,CH=3m,AG=4n,BH=3n,
∵AB=AE,AG⊥BE,
∴EG=BG=4m,
∴GH=BG+BH=4m+3n,
∴,
∴n=2m,
∴EH=EG+GH=4m+4m+3n=8m+3n=8m+6m=14m,
在Rt△CEH中,tan∠BEC=.
∴.