题目内容
【题目】如图,矩形DEFG的边EF在△ABC的边BC上,顶点D,G分别在边AB,AC上,AH⊥BC,垂足为H,AH交DG于点P,已知BC=6,AH=4.当矩形DEFG面积最大时,HP的长是( )
A.1B.2C.3D.4
【答案】B
【解析】
首先设,将AP用含x的代数式表示出来,运用矩形的性质、相似三角形的判定与性质表示出DG,根据矩形DEFG的面积S=DG×DE,得到二次函数,用配方法求出函数的最大值.
解:设HP=x,则DE=GF=x,
∵四边形DEFG是矩形,
∴DG=EF,DE=GF=HP=x,DG∥EF,
∵AH⊥BC,
∴AH⊥DG,
∵DG∥EF,
∴△ADG∽△ABC,
∴,
∴,
解得:DG=,
∴矩形DEFG的面积S=DG×DE=x=-(x-2)2+6,
∵-<0,
∴S有最大值,当x=2时,S的最大值是6,
即当HP=2时,矩形DEFG的面积最大,
故选:B.
练习册系列答案
相关题目
【题目】公司以10元/千克的价格收购一批产品进行销售,经过市场调查获悉,日销售量y(千克)是销售价格x(元/千克)的一次函数,部分数据如表:
销售价格x(元/千克) | 10 | 15 | 20 | 25 | 30 |
日销售量y(千克) | 300 | 225 | 150 | 75 | 0 |
(1)直接写出y与x之间的函数表达式;
(2)求日销售利润为150元时的销售价格;
(3)若公司每销售1千克产品需另行支出a元(0<a<10)的费用,当20≤x≤25时,公司的日获利润的最大值为1215元,求a的值.