题目内容
【题目】如图,AB,BC,CD分别与⊙O相切于E,F,G.且AB∥CD.BO=6cm,CO=8cm.
(1)求证:BO⊥CO;
(2)求BE和CG的长.
【答案】
(1)证明:∵AB∥CD,
∴∠ABC+∠BCD=180°,
∵AB、BC、CD分别与⊙O相切于E、F、G,
∴BO平分∠ABC,CO平分∠DCB,
∴∠OBC= ,∠OCB= ,
∴∠OBC+∠OCB= (∠ABC+∠DCB)= ×180°=90°,
∴∠BOC=90°,
∴BO⊥CO
(2)解:连接OF,则OF⊥BC,
∴Rt△BOF∽Rt△BCO,
∴ = ,
∵在Rt△BOC中,BO=6cm,CO=8cm,
∴BC= =10cm,
∴ = ,
∴BF=3.6cm,
∵AB、BC、CD分别与⊙O相切,
∴BE=BF=3.6cm,CG=CF,
∵CF=BC﹣BF=10﹣3.6=6.4cm.
∴CG=CF=6.4cm.
【解析】(1)由AB∥CD得出∠ABC+∠BCD=180°,根据切线长定理得出OB、OC平分∠EBF和∠BCG,也就得出了∠OBC+∠OCB= (∠ABC+∠DCB)= ×180°=90°.从而证得∠BOC是个直角,从而得出BO⊥CO;(2)根据勾股定理求得AB=10cm,根据Rt△BOF∽Rt△BCO得出BF=3.6cm,根据切线长定理得出BE=BF=3.6cm,CG=CF,从而求得BE和CG的长.
练习册系列答案
相关题目