题目内容
【题目】如图,在△ABC中,AB=AC,∠ABC、∠ACB的平分线BD,CE相交于O点,且BD交AC于点D,CE交AB于点E.某同学分析图形后得出以下结论:①BCD≌CBE;②BAD≌BCD;③BDA≌CEA;④BOE≌COD;⑤ ACE≌BCE;上述结论一定正确的是
A. ①②③ B. ②③④ C. ①③⑤ D. ①③④
【答案】D
【解析】根据等腰三角形的性质及角平分线定义可得有关角之间的相等关系.运用三角形全等的判定方法AAS或ASA判定全等的三角形.
解:∵AB=AC,∴∠ABC=∠ACB.
∵BD平分∠ABC,CE平分∠ACB,
∴∠ABD=∠CBD=∠ACE=∠BCE.
∴①△BCD≌△CBE (ASA);
③△BDA≌△CEA (ASA);
④△BOE≌△COD (AAS或ASA).
故选D.
此题考查等腰三角形的性质和全等三角形的判定,难度不大.
练习册系列答案
相关题目
【题目】甲、乙两名射击运动员在某次训练中各射击10发子弹,成绩如表:
甲 | 8 | 9 | 7 | 9 | 8 | 6 | 7 | 8 | 10 | 8 |
乙 | 6 | 7 | 9 | 7 | 9 | 10 | 8 | 7 | 7 | 10 |
且 =8,S乙2=1.8,根据上述信息完成下列问题:
(1)将甲运动员的折线统计图补充完整;
(2)乙运动员射击训练成绩的众数是 , 中位数是 .
(3)求甲运动员射击成绩的平均数和方差,并判断甲、乙两人本次射击成绩的稳定性.