题目内容
【题目】小明是个爱动脑筋的孩子,他在学完与圆有关的角圆周角、圆心角后,意犹未尽,又查阅到了与圆有关的另一种角﹣﹣﹣﹣﹣﹣弦切角.请同学们先仔细阅读下面的材料,再完成后面的问题.
材料:顶点在圆上,一边与圆相交,另一边与圆相切的角叫做弦切角.如图1,弧 是弦切角∠PAB所夹的弧,他发现弦切角与它所夹的弧所对的圆周角有关系.
问题1:如图2,直线DB切⊙O于点A,∠PCA是圆周角,当圆心O位于边AC上时,
求证:∠PAD=∠PCA,请你写出这个证明过程.
问题拓展:
如果圆心O不在∠PCA的边上,∠PAD=∠PCA还成立吗?如图3,当圆心O在∠PCA的内部时,小明证明了这个结论是成立的.他的思路是:作直线AE,联结PE,由问题1的结论可知∠PAD=∠PEA,而∠PCA=∠PEA,从而证明∠PAD=∠PC.
问题2:如图4,当圆心O在∠PCA的外部时,∠PAD=∠PCA仍然成立.请你仿照小明的思路证明这个结论.
运用:如图5,AD是△ABC中∠BAC的平分线,经过点A的⊙O与BC切于点D,与AB、AC分别相交于E、F.求证:EF∥BC.(提示:可以直接使用本题中的结论)
【答案】解:问题1:证明:
∵AC是圆的直径,
∴∠APC=90°,
∴∠ACP+∠PAC=90°,
∵直线DB切⊙O于点A,
∴∠DAC=90°,
∴∠PAD+∠PAC=90°,
∴∠PAD=∠PCA;
问题2:如图4,
连接AO并延长交⊙O于点D′,连接PD′,
由问题1可知∠PAD=∠D′,
∵∠C=∠D′,
∴∠PAD=∠PCA;
运用:连接DF,如图5,
∵AD是△ABC中∠BAC的平分线,
∴∠EAD=∠DAC,
∵⊙O与BC切于点D,
∴∠FDC=∠DAC,
∴∠FDC=∠EAD,
∵在⊙O中∠EAD=∠EFD,
∴∠FDC=∠EFD,
∴EF∥BC
【解析】问题1:利用切线的以及圆周角定理即可证明∠PAD=∠PCA;
问题2:首先连接AO并延长交⊙O于点D′,连接PD′,由圆周角定理可得∠D′=∠C,又由AD′是直径,AB切圆于点A,易证得∠PAD=∠PCA,继而证得结论;
运用:连接DF,AD是△ABC中∠BAC的平分线,⊙O与BC切于点D,可得∠FDC=∠EAD,又由圆周角定理可得∠EAD=∠EFD,继而证得结论.