题目内容
【题目】如图,点C是⊙O优弧ACB上的中点,弦AB=6cm,E为OC上任意一点,动点F从点A出发,以每秒1cm的速度沿AB方向向点B匀速运动,若y=AE2﹣EF2 , 则y与动点F的运动时间x(0≤x≤6)秒的函数关系式为 .
【答案】y=6x﹣x2
【解析】解:延长CO交AB于G, ∵点C是⊙O优弧ACB上的中点,
∴CO⊥AB,AG= AB= ×6=3(cm),
∴AE2=AG2+EG2 , EF2=FG2+EG2 ,
当0≤x≤3时,AF=xcm,FG=(3﹣x)cm,
∴y=AE2﹣EF2=AG2+EG2﹣FG2﹣EG2=AG2﹣FG2=9﹣(3﹣x)2=6x﹣x2;
当3<x≤6时,AF=xcm,FG=(x﹣3)cm,
∴y=AE2﹣EF2=AG2+EG2﹣FG2﹣EG2=AG2﹣FG2=9﹣(x﹣3)2=6x﹣x2 .
所以答案是:y=6x﹣x2 .
【考点精析】本题主要考查了勾股定理的概念和垂径定理的相关知识点,需要掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧才能正确解答此题.
练习册系列答案
相关题目