题目内容

【题目】如图,正方形ABCD中,点E,F分别在边AB,BC上,AF=DE,AF和DE相交于点G,
(1)观察图形,写出图中所有与∠AED相等的角.
(2)选择图中与∠AED相等的任意一个角,并加以证明.

【答案】
(1)解:由图可知,∠DAG,∠AFB,∠CDE与∠AED相等
(2)解:选择∠DAG=∠AED,证明如下:

∵正方形ABCD,

∴∠DAB=∠B=90°,AD=AB,

∵AF=DE,

在△DAE与△ABF中,

∴△DAE≌△ABF(HL),

∴∠ADE=∠BAF,

∵∠DAG+∠BAF=90°,∠GDA+∠AED=90°,

∴∠DAG=∠AED


【解析】(1)由图示得出∠DAG,∠AFB,∠CDE与∠AED相等;(2)根据SAS证明△DAE与△ABF全等,利用全等三角形的性质即可证明.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网