题目内容
【题目】如图,在⊙O中,AC是弦,AD是切线,CB⊥AD于B,CB与⊙O相交于点E,连接AE,若AE平分∠BAC,BE=1,则CE= .
【答案】2
【解析】解:∵AD是切线,
∴∠C=∠BAE,
∵∠BAE=∠CAE,
∴∠C=∠BAE=∠CAE,
∵CB⊥AD,
∴∠C+∠BAE+∠CAE=90°,
∴∠C=∠BAE=∠CAE=30°,
∴CE=AE=2BE=2,
所以答案是2.
【考点精析】认真审题,首先需要了解角的平分线(从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线),还要掌握含30度角的直角三角形(在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半)的相关知识才是答题的关键.
练习册系列答案
相关题目