题目内容
【题目】如图,矩形中,
,对角线
、
交于点
,
的平分线
分别交
、
于点
、
,连接
.
(l)求的度数;
(2)若,求
的面积;
(3)求.
【答案】(1)75°;(2);(3)
【解析】
(1)由矩形的性质可得AB∥CD,AO=CO=BO=DO,由角平分线的性质和平行线的性质可求BC=BE=BO,即可求解;
(2)过点H作FH⊥BC于F,由直角三角形的性质可得FH=BF,BC=
BF+BF=1,可求BH的长,由三角形面积公式可求△BCH的面积;
(3)过点C作CN⊥BO于N,由直角三角形的性质可求BC=BF+BF=BO=BE,OH=OB-BH=
BF-BF,CN=
BC=
BF,即可求解.
解:(1)∵四边形ABCD是矩形
∴AB∥CD,AO=CO=BO=DO,
∴∠DCE=∠BEC,
∵CE平分∠BCD
∴∠BCE=∠DCE=45°,
∴∠BCE=∠BEC=45°
∴BE=BC
∵∠BAC=30°,AO=BO=CO
∴∠BOC=60°,∠OBA=30°
∵∠BOC=60°,BO=CO
∴△BOC是等边三角形
∴BC=BO=BE,且∠OBA=30°
∴∠BOE=75°
(2)如图,过点H作FH⊥BC于F,
∵△BOC是等边三角形
∴∠FBH=60°,FH⊥BC
∴BH=2BF,FH=BF,
∵∠BCE=45°,FH⊥BC
∴CF=FH=BF
∴BC=BF+BF=1
∴BF=,
∴FH=,
∴S△BCH=×BC×FH=
;
(3)如图,过点C作CN⊥BO于N,
∵△BOC是等边三角形
∴∠FBH=60°,FH⊥BC
∴BH=2BF,FH=BF,
∵∠BCE=45°,FH⊥BC
∴CF=FH=BF
∴BC=BF+BF=BO=BE,
∴OH=OB-BH=BF-BF
∵∠CBN=60°,CN⊥BO
∴,
∴,
∴.
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】某学校准备为七年级学生开设共6门选修课,选取了若干学生进行了我最喜欢的一门选修课调查,将调查结果绘制成了如图所示的统计图表(不完整).
选修课 | ||||||
人数 | 40 | 60 | 100 |
下列说法不正确的是( )
A.这次被调查的学生人数为400人B.对应扇形的圆心角为
C.喜欢选修课的人数为72人D.喜欢选修课
的人数最少