题目内容
【题目】如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.
(1)求点B的坐标和抛物线的解析式;
(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.
①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;
②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.
【答案】(1)抛物线解析式为y=﹣x2+x+2;(2)①点M的坐标为(2.5,0)或(,0);②m的值为或﹣1或﹣.
【解析】试题分析:(1)把A点坐标代入直线解析式可求得c,则可求得B点坐标,由A、B的坐标,利用待定系数法可求得抛物线解析式;
(2)①由M点坐标可表示P、N的坐标,从而可表示出MA、MP、PN、PB的长,分∠NBP=90°和∠BNP=90°两种情况,分别利用相似三角形的性质可得到关于m的方程,可求得m的值;
②用m可表示出M、P、N的坐标,由题意可知有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,可分别得到关于m的方程,可求得m的值.
试题解析:解:
(1)∵与x轴交于点A(3,0),与y轴交于点B,∴0=﹣2+c,解得c=2,∴B(0,2),∵抛物线经过点A,B,∴,解得: ,∴抛物线解析式为;
(2)①由(1)可知直线解析式为,∵M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,∴P(m, ),N(m, ),∴PM=,PA=3﹣m,PN=﹣()=,∵△BPN和△APM相似,且∠BPN=∠APM,∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,分两种情况:
当∠BNP=90°时,则有BN⊥MN,∴点N的纵坐标为2,∴ =2,解得m=0(舍去)或m=,∴M(,0);
当∠NBP=90°时,则有,∵A(3,0),B(0,2),P(m, ),∴BP== ,AP= =(3﹣m),∴,解得m=0(舍去)或m=,∴M(,0);
综上可知当以B,P,N为顶点的三角形与△APM相似时,点M的坐标为(,0)或(,0);
②由①可知M(m,0),P(m, ),N(m, ),∵M,P,N三点为“共谐点”,∴有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,当P为线段MN的中点时,则有2()=,解得m=3(三点重合,舍去)或m=;
当M为线段PN的中点时,则有+()=0,解得m=3(舍去)或m=﹣1;
当N为线段PM的中点时,则有=2(),解得m=3(舍去)或m=;
综上可知当M,P,N三点成为“共谐点”时m的值为或﹣1或.
【题目】如图,由于各人的习惯不同,双手交叉时左手大拇指或右手大拇指在上是一个随机事件,曾老师对他任教的学生做了一个调查,统计结果如下表所示:
2011届 | 2012届 | 2013届 | 2014届 | 2015届 | |
参与实验的人数 | 106 | 110 | 98 | 104 | 112 |
右手大拇指在上的人数 | 54 | 57 | 49 | 51 | 56 |
频率 | 0.509 | 0.518 | 0.500 | 0.490 | 0.500 |
根据表格中的数据,你认为在这个随机事件中,右手大拇指在上的概率可以估计为( )
A. 0.6 B. 0.5 C. 0.45 D. 0.4