题目内容

【题目】如图,已知ABE≌△ACD.

(1)如果BE=6,DE=2,求BC的长;

(2)如果∠BAC=75°,BAD=30°,求∠DAE的度数.

【答案】(1)10;(2)15°

【解析】

(1)根据全等三角形的性质,可得出BE=CD,根据BE=6,DE=2,得出CE=4,从而得出BC的长;

(2)根据全等三角形的性质可得出∠BAE=∠CAD,即可得出∠BAD=∠CAE,计算∠CAD﹣∠CAE即得出答案.

解:(1)∵△ABE≌△ACD,

BE=CD,BAE=CAD,

又∵BE=6,DE=2,

EC=DC﹣DE=BE﹣DE=4,

BC=BE+EC=10;

(2)CAD=BAC﹣BAD=75°﹣30°=45°,

∴∠BAE=CAD=45°,

∴∠DAE=BAE﹣BAD=45°﹣30°=15°.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网