题目内容
【题目】如图1,地面BD上两根等长立柱AB,CD之间有一根绳子可看成抛物线y=0.1x2﹣0.8x+5.
(1)求绳子最低点离地面的距离;
(2)因实际需要,在离AB为5米的位置处用一根立柱MN撑起绳子(如图2),使左边抛物线F1的最低点距MN为1米,离地面2米,求MN的长;
(3)将立柱MN的长度提升为5米,通过调整MN的位置,使抛物线F2对应函数的二次项系数始终为.设MN离AB的距离为m,抛物线F2的顶点离地面距离为k,但2≤k≤3时,求m的取值范围.
【答案】(1)米;(2)米;(3)2≤m≤8﹣2.
【解析】
(1)直接利用配方法求出二次函数最值得出答案;
(2)利用顶点式求出抛物线F1的解析式,进而得出x=5时,y的值,进而得出MN的长;
(3)根据题意得出抛物线F2的解析式,得出k的值,进而得出m的取值范围.
解:(1)∵a=0.1>0,
∴抛物线顶点为最低点,
∵y=0.1x2﹣0.8x+5=0.1(x﹣4)2+,
∴绳子最低点离地面的距离为:米;
(2)由(1)可知,对称轴为x=4,则BD=8,
令x=0得y=5,
∴A(0,5),C(8,5),
由题意可得:抛物线F1的顶点坐标为:(4,2),
设F1的解析式为:y=a(x﹣4)2+2,
将(0,5)代入得:16a+2=5,
解得:a=,
∴抛物线F1为:y=(x﹣4)2+2,
当x=5时,y=+2=,
∴MN的长度为:米;
(3)∵MN=DC=5,
∴根据抛物线的对称性可知抛物线F2的顶点在ND的垂直平分线上,
∴F2的横坐标为:(8﹣m)+m=m+4,
∴抛物线F2的顶点坐标为:(m+4,k),
∴抛物线F2的解析式为:y=(x﹣m﹣4)2+k,
把C(8,5)代入得:(8﹣m﹣4)2+k=5,
解得:k=﹣(4﹣m)2+5,
∴k=﹣(m﹣8)2+5,
∴k是关于m的二次函数,
又∵由已知m<8,在对称轴的左侧,
∴k随m的增大而增大,
∴当k=2时,﹣(m﹣8)2+5=2,
解得:m1=2,m2=14(不符合题意,舍去),
当k=3时,﹣(m﹣8)2+5=3,
解得:m1=8﹣2,m2=8+2(不符合题意,舍去),
∴m的取值范围是:2≤m≤8﹣2.
【题目】为了解今年初三学生的数学学习情况,某校对上学期的数学成绩作了统计分析,绘制得到如下图表.请结合图表所给出的信息解答下列问题:
成绩 | 频数 | 频率 |
优秀 | 45 | b |
良好 | a | 0.3 |
合格 | 105 | 0.35 |
不合格 | 60 | c |
(1)该校初三学生共有多少人?
(2)求表中a,b,c的值,并补全条形统计图.
(3)初三(一)班数学老师准备从成绩优秀的甲、乙、丙、丁四名同学中任意抽取两名同学做学习经验介绍,求恰好选中甲、乙两位同学的概率.
【题目】某商店销售一种商品,每件成本8元,规定每件商品售价不低于成本,且不高于20元,经市场调查每天的销售量y(件)与每件售价x(元)满足一次函数关系,部分数据如下表:
售价x(元件) | 10 | 11 | 12 | 13 | 14 | x |
销售量y(件) | 100 | 90 | 80 | 70 |
|
|
(1)将上面的表格填充完整;
(2)设该商品每天的总利润为w元,求w与x之间的函数表达式;
(3)计算(2)中售价为多少元时,获得最大利润,最大利润是多少?