题目内容
【题目】如图所示,点是线段的中点,,.
(1)如图1,若,求证是等边三角形;
(2)如图1,在(1)的条件下,若点在射线上,点在点右侧,且是等边三角形,的延长线交直线于点,求的长度;
(3)如图2,在(1)的条件下,若点在线段上,是等边三角形,且点沿着线段从点运动到点,点随之运动,求点的运动路径的长度.
【答案】(1)证明见解析;(2)18;(3)18.
【解析】
(1)利用垂直平分线的性质可得BA=BC,再得,即可证明是等边三角形;
(2)证明,得出,继而得到,即可求得PC的长度;
(3)取BC的中点H,分两种情况证明,得出或,可知点N的运动路径是一条线段,据此求解即可.
解:(1)∵,,
,
是线段中点,,
,
是等边三角形;
(2)∵、是等边三角形,
∴,AB=BC,BD=BQ,,
∴,
∴,
,
,
,
,
,
;
(3)取BC的中点H,连接OH,连接CN,
分两种情况讨论:
当M在线段上时,如图2,
∵H是BC的中点,,
∴,
∴是等边三角形,
∵是等边三角形,
∴,OM=ON, ,
∴,
∴,
点从起点到作直线运动,
∵当点M在点B时,CN=BH=9,
∴点M从B运动到H时,点N运动路径的长度等于9;
当点M在线段上时,如图3,
∵H是BC的中点,,
∴,
∴是等边三角形,
∵是等边三角形,
∴,OM=ON, ,
∴,
∴,
点从到终点作直线运动,
∵当点M在点C时,CN=CH=9,
∴点M从H运动到C时,点N运动路径的长度等于9;
综上所述,的路径长度为:.
【题目】小迪同学在学勾股定理时发现一类特殊三角形:在一个三角形中,如果一个角是另一个角的2倍,那么称这个三角形为“倍角三角形”.
如图1,在倍角中,,、、的对边分别记为,,,三角形的三边,,有什么关系呢?让我们一起来探索……
(1)已知“倍角三角形”的一个内角为,则这个三角形的另两个角的度数分别为______
(2)小迪同学先从特殊的“倍角三角形”入手研究,请你结合图2和图3填写下表:
三角形 | 角的已知量 | ||
图2 | ______ | ______ | |
图3 | ______ |
小迪同学根据上表,提出一般性猜想:在“倍角三角形”中,,那么,,三边满足:______;
(3)如图1:在倍角三角形中,,、、的对边分别记为,,,求证:.