题目内容
(1)如图1,已知△PAC是圆O的内接正三角形,那么∠OAC﹦______;
(2)如图2,设AB是圆O的直径,AC是圆的任意一条弦,∠OAC﹦α﹒
①如果α﹦45°,那么AC能否成为圆内接正多边形的一条边?若有可能,那么此多边形是几边形?请说明理由﹒
②若AC是圆的内接正n边形的一边,则用含n的代数式表示α应为______﹒
(2)如图2,设AB是圆O的直径,AC是圆的任意一条弦,∠OAC﹦α﹒
①如果α﹦45°,那么AC能否成为圆内接正多边形的一条边?若有可能,那么此多边形是几边形?请说明理由﹒
②若AC是圆的内接正n边形的一边,则用含n的代数式表示α应为______﹒
(1)∵△PAC是圆O的内接正三角形,
∴∠AOC=2∠APC=2×60°=120°,
∵OA=OC,
∴∠OAC=
=
=30°;
(2)①能﹒
∵α=45°,
∴圆内接正多边形的一个内角为90°,
∴是正方形﹒
②∵AC是圆的内接正n边形的一边,
∴2α=
,
∴α=90°-
.
∴∠AOC=2∠APC=2×60°=120°,
∵OA=OC,
∴∠OAC=
180°-∠AOC |
2 |
180°-120° |
2 |
(2)①能﹒
∵α=45°,
∴圆内接正多边形的一个内角为90°,
∴是正方形﹒
②∵AC是圆的内接正n边形的一边,
∴2α=
(n-2)×180° |
n |
∴α=90°-
180° |
n |
练习册系列答案
相关题目