题目内容
半径是2和3的两圆交于M、N两点,过交点分别作各圆的切线且相互经过另一个圆的圆心,则公共弦MN之长为( )
A.6 | B.12 | C.
| D.
|
如图所示:连接MN,
∵过交点M,N分别作各圆的切线且相互经过另一个圆的圆心,
∴OM⊥O′M,
∵MO=2,MO′=3,
∴OO′=
=
,
由题意可得:OO′⊥MN,MI=IN,
∴MI•OO′=MO•MO′,
∴MI=
=
=
,
∴MN=2×
=
.
故选:C.
∵过交点M,N分别作各圆的切线且相互经过另一个圆的圆心,
∴OM⊥O′M,
∵MO=2,MO′=3,
∴OO′=
4+9 |
13 |
由题意可得:OO′⊥MN,MI=IN,
∴MI•OO′=MO•MO′,
∴MI=
MO•MO′ |
OO′ |
2×3 | ||
|
6
| ||
13 |
∴MN=2×
6
| ||
13 |
12
| ||
13 |
故选:C.
练习册系列答案
相关题目